
*Corresponding author.

Email address: riyanarto@if.its.ac.id

Time Based Discovery of Parallel Business Processes

Riyanarto Sarno*, Kartini, Widyasari Ayu Wibowo, and Adhatus Solichah A

Informatics Department, Faculty of Information Technology, Institut Teknologi Sepuluh Nopember, Indonesia

Abstract— Process mining for discovering concurrent activities

is important since there are many of them contained in business

processes. The concurrency is formed by AND parallel or OR

conditional. However, most of the existing process mining

algorithm discover only concurrency formed by AND parallel.

Substituting OR conditional with AND parallel does not always

discover the real business processes. Also, the existing process

mining algorithms use linear dependence principle; therefore,

they require complete event logs which are difficult to be provided

since there are many possible traces. In this regard, this paper

proposes Time based Discovery algorithm which utilizes non-

linear dependence principle. The proposed algorithm can

effectively distinguish AND parallel and OR conditional. The

experimental results show that the proposed algorithm can

discover the concurrent business processes formed by AND

parallel or OR conditional.

Keywords—Parallel Bussiness Process, Incompleteness, Time

Based Process Mining.

I. INTRODUCTION

Process discovery is one of the most challenging process

mining task. It is a set of techniques that automatically construct

a model of an organization`s current activities and its major

activity variations. These techniques use event log of activities

within an organization. The model is analyzed to show the

complex activity problems and how to solve them. These

problems exist in any field, e.g. business [1], environment [2,

3], smartphone [4], fraud [5], etc. Each techniques has different

disadvantages. These techniques have disadvantages.

Therefore, the effective organization`s activities can not be

presented by the discovered model. Consequently, these

techniques should be improved.

Process discovery comes up with many algorithm, e.g.

alpha, alpha+, alpha++, genetic miner [6], and heuristic miner

[7] algorithm. The alpha algorithm is the basic algorithm of

process discovery. This algorithm has problem with the length

one loop and length two loop. Hence, the alpha algorithm is

improved to be alpha+ algorithm. However, the alpha+

algorithm also has problem with non-free choice. Therefore, the

alpha+ is improved to be alpha++. Despite these improvements,

the alpha++ algorithm still has several problems, i.e.

completeness, noise, OR conditional. Then, the genetic miner

and heuristic miner algorithms come up to solve the

completeness and noise problem. However, there are no

algorithm that focus on OR conditional. The algorithm usually

discovers the OR conditional as AND parallel or XOR

conditional. This way of discovering will change the result of

activities [8].

In real life case on Fig 1, the OR conditional is the condition

between “give water” and “give fertilizer” activities. The “give

water” activity will be played if the soil is dry. The “give

fertilizer” activity will be played every two weeks. If the OR

conditional become AND parallel, then the plant will get the

water every two weeks. This action will kill the plant. If the OR

conditional become XOR conditional, then the plant will get

only water or fertilizer. This action will unbalance the plant

condition. Hence, it is important to distinguish OR conditional,

XOR conditional, and AND parallel.

Fig 1. Activities of Plant Treatment

When it comes to process mining, the notion of

completeness is also very important. It is related to noise.

However, whereas noise refers to the problem of having “too

much data” (describing rare behavior), completeness refers to

the problem of having “too little data” [9]. The completeness

problem occurs when the event log does not contain all of the

possible activity`s flows. However, there are so many possible

activity`s flows. Therefore, the event log is barely possible to

be complete. The alpha, alpha+, and alpha++ algorithm

discover the flow between activities using linear dependence

principle [10]. However, the linear-dependence principle is less

efficient compared to non-linear dependence principle using

activity lifespan [10]. The non-linear principle need less data in

the event log. Hence, it can be stated that the non-linear

principle can reduce the need of complete event log.

In this paper, the proposed method focuses on discovering

OR conditional and reducing the need of complete log. It

defines several definitions and algorithms to discover OR

conditional. And it uses the non-linear dependence principle

using activity lifespan to reduce the need of complete log. The

advantages of non-linear dependence is presented in

mathematical approach.

II. RELATED WORK

A. Process Modeling

Aalst [9] introduces some basic process modeling

notations, i.e. transition system, Petri nets, and YAWL.

Transition system is the most basic process modeling notation.

It is simple but have problem expressing concurrency

succinctly. Suppose that there are n parallel activities, i.e. all n

activities need to be executed but any order is allowed. There

are n! possible execution sequences. Petri nets are the oldest and

best investigated process modeling language allowing for

modeling concurrency. However, Petri nets define only firing

rules for AND-gate and XOR-gate without OR-gate. YAWL is

2015 International Conference on Computer, Control, Informatics and Its Applications

978-1-4799-8773-3/15/$31.00 c©2015 IEEE 28

currently one of the most widely used open-source workflow

system. YAWL offers direct support for mant patterns while

keeping the language simple. These patterns are control-flow

patterns, data patterns, resource patterns, etc. From the control-

flow perspective, YAWL introduces some gate, i.e. AND-gate,

XOR-gate, and OR-gate. The proposed method focuses on

discovering OR conditional. Hence, the proposed method will

uses YAWL since it defines OR-gate.

B. The Existing Algorithms

The alpha++ algorithm discovers model using linear

dependence principle. It defines some rules to discover

concurrency. However, it does not define rule to distinguish the

concurrency occurred by AND-gate or OR-gate. The alpha++

algorithm uses Petri nets as process modeling notation. As said

by Aalst, Petri nets does not firing rule for OR-gate. The OR-

gate is used as OR conditional notation. Hence, the alpha++

algorithm can not discover OR conditional. The alpha++

algorithm defines its toleration of completeness in

mathematical approach. The notion of completeness for event

log is n(n-1) where normally n! with n as the number of parallel

activities.

 Rizka et. al. [10] view one process instance as one process

variant. Hence, they use non linear dependence for process

discovery to get parallel relation in one process instance.

Moreover, the use of non linear dependence increase the

precision of discovered process model from process discovery.

The non-linear dependence uses activity lifespan control flow

to enable the relations in process instances. And the control

flow uses temporal causal relation to note the relation between

activities in event log. Additionally, they introduce an

algorithm from them. The main steps of the algorithm are listing

all input and output activities and classifying sequence and

parallel relations. However, they do not distinguish the parallel

formed by AND or OR. Hence, the proposed method introduce

the definitions of AND parallel and OR conditional.

The temporal causal relation and activity lifespan control flow

is described in Definition 1 and Definition2. And the non-linear

dependence is described in Definition 3.

Definition 1. Temporal Causal Relations. Given event

log (𝐿) and trace () such that
𝜎 ∈ 𝐿. The causal relation between two activities
𝐴(𝐴𝑠, 𝐴𝑓) and 𝐵(𝐵𝑠, 𝐵𝑓), according to which 𝐴, 𝐵 ∈ 𝐿 can be

differentiated as follows:

𝐵𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑑 𝑚𝑒𝑒𝑡𝑠, 𝐴 > 𝐵 𝑖𝑓𝑓 𝐴𝑓 ≤ 𝐵𝑠

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠, 𝐴□𝐵 𝑖𝑓𝑓 𝐴𝑓 > 𝐵𝑠 𝑎𝑛𝑑 𝐴𝑓 < 𝐵𝑓

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠, 𝐴@𝐵 𝑖𝑓𝑓 𝐴𝑠 < 𝐵𝑠 𝑎𝑛𝑑 𝐵𝑓 > 𝐴𝑠 𝑎𝑛𝑑 𝐴𝑓 > 𝐵𝑓

𝐼𝑠 𝑓𝑖𝑛𝑖𝑠ℎ 𝑏𝑦, 𝐴𝑓𝐵 𝑖𝑓𝑓 𝐴𝑓 = 𝐵𝑓 𝑎𝑛𝑑 𝐴𝑠 < 𝐵𝑠 𝑎𝑛𝑑 𝐵𝑠 < 𝐴𝑓

𝐸𝑞𝑢𝑎𝑙𝑠, 𝐴𝐵 𝑖𝑓𝑓 𝐴𝑠 = 𝐵𝑠 𝑎𝑛𝑑 𝐴𝑓 = 𝐵𝑓

𝑆𝑡𝑎𝑟𝑡𝑠, 𝐴𝑝𝐵 𝑖𝑓𝑓 𝐴𝑠 = 𝐵𝑠 𝑎𝑛𝑑 𝐴𝑓 > 𝐵𝑓

Definition 2. Activity Lifespan Control Flow. Given

event log (𝐿) and trace () such that
𝜎 ∈ 𝐿. The control flow between two activities

𝐴(𝐴𝑠, 𝐴𝑓) and 𝐵(𝐵𝑠, 𝐵𝑓), according to which 𝐴, 𝐵 ∈ 𝐿 can be

differentiated as follows:

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝐴 → 𝐵 𝑖𝑓𝑓 𝐴 > 𝐵

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙, 𝐴 ∥ 𝐵 𝑖𝑓𝑓 𝐴 > 𝐵 𝑎𝑛𝑑 𝐵 > 𝐴 𝑜𝑟

 {𝐴□𝐵 𝑜𝑟 𝐴@𝐵 𝑜𝑟 𝐴𝑓𝐵 𝑜𝑟 𝐴𝐵 𝑜𝑟 𝐴𝑝𝐵}

Definition 3. Non-Linear Dependency in Process Instance.

Given event log L and trace such that L, a sequence

relation ab and ac between activities a(es,ef), b(es,ef). and

c(es,ef), such that a,b,cA if a>b, a>c, and bc. As well as, a

sequence relation bd and cd between activities a(es,ef),

b(es,ef). and c(es,ef), such that a,b,cA iff b>d, c.d, and bc.

III. THE PROPOSED METHOD

A. Definition and Formulation

The proposed method introduced some definitions to cope

with the algorithm presented in this paper. The algorithm

employs this definitions together with the definitions mentioned

in Section 2. The definitions proposed in the methodology are

described in Definition 4 and 5.

Definition 4. Classification of Parallel. Given event log

(𝐿) and trace () such that
𝜎 ∈ 𝐿. The control flow between two activities
𝐴(𝐴𝑠, 𝐴𝑓) and 𝐵(𝐵𝑠, 𝐵𝑓), according to which 𝐴, 𝐵 ∈ 𝐿 can be

differentiated as follows:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑋𝑂𝑅, 𝐴 ⊗ 𝐵 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑜𝑛𝑙𝑦 𝐴 𝑜𝑟 𝐵

 𝑖𝑛 𝑎𝑛𝑦 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑜𝑔

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐴𝑁𝐷, 𝐴𝐵 𝑖𝑓𝑓 𝐴
∥ 𝐵 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝐴⨂𝐵

𝑖𝑛 𝑎𝑛𝑦 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 log(𝐿)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑂𝑅, 𝐴⨁𝐵 𝑖𝑓𝑓 𝐴 ∥ 𝐵 𝑎𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝐴⨂𝐵
𝑖𝑛 𝑎𝑛𝑦 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 log (𝐿)

Definition 5. Notion of Completeness. Given event log

(𝐿), model (M), and activity (A). Notion of completeness

between the event log (𝐿) and the model (M) are stated as

follows:

- A M, iff A L.

- (A1 A2) M , iff (A1A2)
1 L where i in Ai

is an identifier of an activity and n in (A1A2)
n is

A1 and A2 relation’s frequency.

- (A1 A2) M, iff [(A1A2) L and (A2A1)

L] or [(A1A2) L and (A2A1) L].

The notion of completeness in Definition 5 is stating the

required conditions for event log used in process discovery.

These conditions inflicts the event log to have a certain amount

of traces inside it. The amount of traces in event log is different

between business process models. It is determined by the

number of parallel relations, the number of parallel activities,

and the number of parallel branches in the event log. Therefore,

to calculate the right amount of traces shall be stored in event

log, this paper introduced some formulations described in

Formulation 1 to 5.

29

Formulation 1. AND parallel. Given a model (M),

number of parallel activities at ith branch (ni) and number of

parallel branches (p). The model (M) consists of one AND

parallel. The amount of traces needed in event log to discover

this model is calculated using the following equation.

𝑨𝑵𝑫_𝑻 = ∑ ∑ 𝒏𝒊 × 𝒏𝒋

𝒑

𝒋=𝒊+𝟏

𝒑

𝒊=𝟏

Formulation 2. OR Conditional. Given a model (M),

number of parallel activities at ith branch (ni) and number of

parallel branches (p). The model (M) consists of one OR

conditional. The amount of traces needed in event log to

discover this model is calculated using the following equation.

𝑶𝑹_𝑻 = (∑ ∑ 𝒏𝒊 × 𝒏𝒋

𝒑

𝒋=𝒊+𝟏

𝒑

𝒊=𝟏

) + 𝟏

Formulation 3. XOR Conditional. Given a model (M),

relation on ith branch (Ri) and number of parallel branches (p).

The model (M) consists of one XOR conditional. The amount

of traces needed in event log to discover this model is calculated

using the following equation.

𝑿𝑶𝑹_𝑻 = ∑ 𝒊𝒇 𝑹𝒊 = 𝒔𝒆𝒒, 𝟏 𝒆𝒍𝒔𝒆 𝟎

𝒑

𝒊=𝟏

Formulation 4. Set of Parallels. Given a model (M)

consists of one set of parallels which is formed with one AND

parallel other parallel inside it. The amount of traces needed in

event log to discover this model is calculated using the

following equation.

𝑷𝑻 = 𝑨𝑵𝑫_𝑻 + 𝑶𝑹_𝑻 + 𝑿𝑶𝑹_𝑻

Formulation 5. The Whole Process Model. Given a

model (M) and the maximum number of traces for one set of

parallels (PTmax). The model (M) consists of only sequence

relation or together with parallel relation. The amount of traces

needed in event log to discover this model is calculated using

the following equation.

𝑪𝑻 = 𝑰𝒇 𝒔𝒆𝒒, 𝟏 𝒆𝒍𝒔𝒆 𝑷𝑻𝒎𝒂𝒙

B. The Algorithm

The proposed algorithm uses Definition 1, 2, and 3 to

discover relations from event log. Then, it uses Definition 4 to

differentiate parallel relations to be AND parallel, OR

conditional, or XOR conditional. Finally, it merges all relations

using non-linear dependence in Definition 3. The detail steps of

it are described as follows:

Algorithm 1.

Step 1. List input (𝐼) and output(𝑂) activities from every

trace (𝐼𝑖 , 𝑂𝑖) in the event log.

Step 2. List the sequence relations (>) from every trace

(>𝑖) in the event log.

Step 3. List the parallel relations (||) from every trace (∥𝑖)

in the event log.

Step 4. Classify the parallel relations (||) to be AND

parallel, OR conditional, and XOR conditional.

Step 5. Merge between members in the AND parallel

relation.

𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑅 𝑖 , 𝑤ℎ𝑖𝑐ℎ (A,B)∧(C,D)∈𝑅

𝑖𝑓𝑓 A=(C ∨D) 𝑛𝑑 [(C∨D),B]∨[B,(C∨D)]∈>_𝐿 𝑡ℎ𝑒𝑛

[A,(B,(C ∨D))]

Step 6. Merge between members in the OR conditional

relation.

𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑅 𝑖 , 𝑤ℎ𝑖𝑐ℎ (A,B)∧(C,D)∈𝑅

𝑖𝑓𝑓 A=(C∨D) 𝑎𝑛𝑑 [(C ∨D),B]∨[B,(C ∨D)]∈>_𝐿 𝑡ℎ𝑒𝑛

[A,(B,(C ∨D))]

Step 7. Form a graph using the relations of AND parallel,

OR conditional, and XOR conditional.

Step 8. Add the sequence relations and input-output to the

graph.

𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑅 𝑖𝑛 >_𝐿, 𝑤ℎ𝑖𝑐ℎ (A,B)∈𝑅

𝑖𝑓𝑓 (A,B)∉𝐺

𝑖𝑓𝑓 (B) 𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

𝐺←𝐺 ∪(A,B)

𝑒𝑙𝑠𝑒 𝑖𝑓𝑓 AC, 𝑤ℎ𝑖𝑐ℎ (C,B)∈𝐺

𝐺←𝐺∪[(A,C) B]

𝑒𝑙𝑠𝑒 𝑖𝑓𝑓 A C, 𝑤ℎ𝑖𝑐ℎ (C,B)∈𝐺

𝐺←𝐺∪[(A,C) B]

𝑒𝑙𝑠𝑒 𝐺←𝐺∪[(A,C) B]

The algorithm is applied on the event log shown in Table

1 (L = {ABBC, ABDEC, ADBEC, ADEBC, ABDEDEC}).

TABLE 1. AN EVENT LOG

Trace Task Start Finish

1

A 22:44 22:51

B 23:02 23:08

B 23:11 23:16

C 23:22 23:32

2

A 24:50 24:58

B 25:00 25:23

D 25:05 25:18

E 25:27 25:37

C 25:43 25:51

3

A 25:46 26:21

D 26:33 27:59

B 27:08 28:27

E 28:18 28:45

C 28:52 29:20

4

A 32:00 32:35

D 32:42 34:25

B 33:40 35:50

E 34:45 35:28

C 36:02 36:31

5

A 37:55 38:15

B 38:21 38:47

D 38:31 38:45

E 38:53 39:06

D 39:12 39:25

E 39:30 39:43

C 39:45 40:01

The event log (L) is described on Gantt chart to show the

different time execution. The first to third steps of the proposed

algorithm discover the relation from each traces.

30

Fig 2. Gantt chart of first trace in the event log

The discovered relations in first trace are described as

follows:

Step 1. I1 = A, O1 = C.

Step 2. >1 = {{} A, A B, B B, B C, C {}}.

Step 3. ∥1 = {}.

Fig 3. Gantt chart of second trace in the event log

The discovered relations in first trace are described as

follows:

Step 1. I2 = A, O2 = C.

Step 2. >2 = {{} A, A B, A D, D E, E C,

C{}}.

Step 3. ∥2 = { B∥D }.

Fig 4. Gantt chart of third trace in the event log

The discovered relations in first trace are described as

follows:

Step 1. I3 = A, O3 = C.

Step 2. >3 = {{} A, A D, E C, C {}}.

Step 3. ∥3 = { B∥D , B∥E }.

Fig 5. Gantt chart of fourth trace in the event log

The discovered relations in first trace are described as

follows:

Step 1. I4 = A, O4 = C.

Step 2. >4 = {{} A, A D, D E, B C, C {}}

Step 3. ∥4 = { B∥E }.

Fig 6. Gantt chart of fifth trace in the event log

The discovered relations in first trace are described as

follows:

Step 1. I5 = A, O5 = C.

Step 2. >5 = {{} A, A B, D E, E D, E C,

C {}}.

Step 3. ∥5 = { B∥D }.

The relations discovered in every trace will be united in

each classifications.

Step 1. I = A, O = C.

Step 2. > = {{}→A, A→B, B→B, B→C, D→E, E→C,

A→D, E→D, C→{}}

Step 3. ∥={B∥D, B∥E}

Step 4. = {}

Step 5. = {BD, BE}

Step 6. = {B(D,E)}

Step 7. G = {, }

Fig 7. Graph composed by OR and AND relations

Step 8. 𝐺 ← 𝐺 ∪(>, I, O)

Fig 8. The final graph

IV. EVALUATION

The proposed method can discover the OR conditional

and length two loop shown by its demonstration in Section 3.

The example in Section 3 is modified to show the proposed

algorithm distinguishing the concurrency formed by AND

parallel or OR conditional. The current event log (L) is

31

modified to be L`(L` = { ABDEC, ADBEC, ADEBC,

ABDEDEC}). The first trace in the event log (L) does not

include in the modified event log (L`). Then, the modified event

log (L`) is discovered by the proposed method. The relations

discovered from the modified event log (L`) are as follows:

Step 1. I = A, O = C.

Step 2. > = {{}→A, A→B, B→C, D→E, E→C, A→D,

E→D, C→{}}

Step 3. ∥={B∥D, B∥E}

Step 4. = { BD, BE }

Step 5. = { }

Step 6. = {B(D,E)}

Step 7. G = {, }

Fig 9. Graph composed by OR and AND relations

Step 8. 𝐺 ← 𝐺 ∪(>, I, O)

Fig 10. Final graph

From these examples, it can be stated that the proposed

method can distinguish parallel as OR conditional or AND

parallel while temporal activity based algorithm [10] cannot. At

first example using event log L, the proposed method discover

OR conditional and on the other hand, temporal activity based

algorithm discover AND parallel. At second example using

event log L’, both proposed method and temporal activity based

algorithm discover AND parallel. Furthermore, the proposed

method can discover length one loop, length two loop, and

XOR conditional.

Fig 11. The Discovered Process Model Using Linear Dependence

The difference between linear and non-linear dependence

is described using the proposed methodology. Therefore, the

example in Section 3 is modified to show the proposed

algorithm discovering more relations by using non-linear

dependence principle rather than linear dependence principle.

The event log (L) is modified to be L`` (L`` = { ABC, ADEBC,

ABDEDEC}). The second and third traces in the event log (L)

do not include in the modified event log(L``). Then, the

modified event log (L``) is discovered by the proposed method

using linear and non-linear dependence.

The result from the proposed method is produced such as

the example in Section 3. The process model discovered from

the modified event log (L``) are shown on Fig 11 and 12

representing linear and non-linear dependence.

Fig 12. The Discovered Process Model Using Non-Linear Dependence

The discovered sequence relations are shown in Table 2.

The discovered parallel relations are shown in Table 3. The

different relations are presented in bold and italic style.

TABLE 1. THE DIFFERENT SEQUENCE RELATIONS

Trace Non-Linear Linear

1 {}→A, A→B, B→B, B→C,
C→{}

{}→A, A→B, B→B, B→C,
C→{}

2 {}→A, A→D, D→E, B→C,

C→{}

{}→A, A→D, D→E, E→B,
B→C, C→{}

3 {}→A, A→B, D→E, E→D,
E→C, C→{}

{}→A, A→B, B→D, D→E,

E→D, E→C, C→{}

TABLE 3. THE DIFFERENT PARALLEL RELATIONS

Trace Non-Linear Linear

1 - -

2 B∥E -

3 B∥D -

The parallel relations in the event log (L``) cannot be

found by using linear dependence principle. They are

discovered as sequence relation at Step 2. The linear

dependence principle regards the relation between activities as

sequence relation unless it is reciprocal relation (AB, BA). The

reciprocal relation is took as parallel relation. Therefore, the

relation between B and E is discovered as sequence relation and

so does the relation between B and D; whereas, the non-linear

dependence principle discovers these relations as parallel

relation. Because, it utilizes activity lifespan which can show

concurrency in the log (L``) to be used with the definitions

stated in this paper.

Process discovery relies on notion of completeness in

Definition 5 to produced process model. Based on Formulation

1, the number of traces in event log which is fulfilled the notion

of completeness to discover process model on Fig 13 using non-

linear dependence is 4+3+2+1=10 traces; whereas the number

of traces in event log which is fulfilled the notion of

32

completeness to discover process model on Fig 13 using linear

dependence is (4 + 3 + 2 + 1) * 2 = 20 traces. Therefore, it can

be stated that non-linear dependence is better than linear

dependence in overcome incompleteness of event log. The

needed number of traces in event log to discover business

process by linear dependence is two times more than non-linear

dependence. The difference number of traces in event log

between linear and non-linear dependence is shown on Chart 1.

The chart describes the difference of the number of traces to

discover process model formed with n parallel activities with n

as number of parallel activities. Hence, it can be stated that the

more parallel activities in process model, the better process

discovery using non-linear dependence than linear dependence

in overcoming incompleteness event log.

Fig 13. A model with 5 parallel activities.

Chart 1. The difference number of traces between linear and non-linear

dependence.

V. CONCLUSION

The paper proposes a method to discover concurrent

business processes formed by AND parallel or OR conditional.

The proposed method utilizes non-linear dependence principle

to discover more relations contained in event logs. The event

log is mined using the rules described in Definition 1 and 2 in

Section 3. Then the discovered parallel relations are classified

into AND parallel and OR conditional using Definition 3.

Finally, all of the discovered relations are formed into a graph

using the proposed algorithm. The result of the first example in

Section 4 shows that the proposed method successes on

distinguishing the concurrency formed by AND parallel or OR

conditional. The result of the second example in Section 4

shows that the use of non-linear dependence principle reduces

the need of complete logs. The needed number of traces in event

log to discover business process by linear dependence is two

times more than non-linear dependence. The noise problems

caused by truncated event logs will be considered in future

research.

VI. REFERENCES

[1] Olatunde T. Baruwa, Miquel A. Piera, "Identifying

FMS repetitive patterns for efficient search-based

scheduling algorithm: A colored Petri net approah,"

Journal of Manufacturing Systems, vol. 35, pp. 120-

135, 2015.

[2] Adnen Sanaa, Samir Ben Abid, Abdennacer

Boulila, Chokri Messaoud, Mohammed Boussaid,

Najeh Ben Fadhel, "Modelling hydrochory effects

on the Tunisian island populations of Pancratium

maritimum L. using colored Petri nets,"

BioSystems, vol. 129, pp. 19-24, 2015.

[3] Jie Yuan, David Oswald, Wei Li, "Autonomous

traking of chemical plumes developed in both

diffusive and turbulent airflow environment using

Petri nets," Expert Systems with Application, vol.

42, pp. 527-538, 2015.

[4] Victor R.L. Shen, Horng-Yih Lai, Ah-Fur Lai, "The

implementation of a smartphone-based fall

detection system using a high-level fuzzy Petri net,"

Applied Soft Computing, vol. 26, pp. 390-400, 2015.

[5] Riyanarto Sarno, Rahadian Dustrial Dewandono,

Tohari Ahmad, Mohammad Farid Naufal, and

Fernandes Sinaga, "Hybrid Association Rule

Learning and Process Mining for Fraud Detection,"

IAENG International Journal of Computer Science,

vol. 42, no.2, pp59-72, 2015.

[6] Borja Vazquez-Barreiros, Manuel Mucientes,

Manuel Lama, "ProDiGen: Mining complete,

precise and minimal structure process models with

a genetic algorithm," Information Sciences, vol.

294, pp. 315-333, 2015.

[7] Sofie De Cnudde, Jan Claes, Geert Poels,

"Improving the quality of the Heuristics Miner in

Prom 6.2," Expert Systems with Applications, vol.

41, pp. 7678-7690, 2014.

[8] Riyanarto Sarno, Putu Linda Indita Sari, Hari

Ginardi, Dwi Sunaryono, Imam Mukhlash,

"Decision Mining for Multi Choice Workflow

Patterns," in 2013 International Conference on

Computer, Control, Informatics ad Its Applications,

pp. 337-342, 2013.

[9] W. M. P. v. d. Aalst, Process Mining: Process

Modelling and Analysis, Netherlands: Springer, pp.

31-42, 2010.

[10] Riska A. Sutrisnowati, Hyerim Bae, Dongha Lee,

Minsoo Kim, "Process Model Discovery Based On

Activity Lifespan," in International Conference on

Technology Innovation and Industrial

Management, pp. 137-156, Seoul, 2014.

33

